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Recent genome-scale analyses of genetic interactions in model microbes have revealed the inherent func-
tional organization of the cell as a dense network of highly interconnected pathways. While classical one
gene at a time paradigms offer limited insight into cellular systems, genome-scale approaches are making
considerable headway. Indeed, where small organic compounds are ideal probes of biological complexity,
systematic chemical genomic methods are emerging as requisite and powerful approaches to describing
both the small molecule probe and network with which it interacts. Here, we highlight various chemical
genomic approaches that are being pioneered in model microbes.
Introduction
In light of the explosion in sequencing efforts and the expansion in

genome-scale approaches to chart genetic interactions, our view

of the cell is changing. With this new wealth of information comes

a new appreciation and understanding of complex biological

systems. While classicalgeneticshas played a pivotal role ineluci-

dating biology by investigating relationships between genes and

phenotypes, we are now increasingly turning to small molecules

as modulators. The thesis is that small molecules are ideal probes

of biological systems with advantages over genetic manipulation.

It has been pointed out that genetic inactivation is effectively

permanent and technically tedious, even in the most tractable

systems, and that these limitations can be circumvented through

the use of small molecules (Specht and Shokat, 2002).

Probing biological functions with small molecules has helped

elucidate functional roles for enigmatic areas of biology in which

conventional genetic and biochemical approaches have pro-

vided limited understanding. Insights gained over the last

80 years into microbial physiology have frequently come from

efforts to understand the mechanisms of action of antibiotics

discovered during this same period. Indeed, our understanding

of basic processes of nucleic acid, protein, and cell wall

synthesis has often been due to remarkable discoveries in model

microbes, enabled by antibiotic compounds. Despite the advan-

tages of small molecules as probes, efforts to discover and char-

acterize their interactions within biological systems have been

narrowly focused and limited for the most part to traditional

nongenomic approaches. The new understanding of cellular

complexity that has come from large-scale studies of protein

and genetic interactions (Butland et al., 2005; Costanzo et al.,

2010; Faith et al., 2007; Jeong et al., 2001), has sparked

a demand for genome-scale techniques to characterize both

new and old chemical probes. Such chemical genomic method-

ologies, it is reasoned, more fittingly describe complex biology

by informing on how network components interact to produce

physiological responses or maintain phenotypic stability under

states of stress.
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Along with providing a global view of the biological system

under study, chemical genomics also provides remarkable new

tools to understand the mechanism of action of small molecules

of unknown function. This is a daunting hurdle in both new probe

development and in drug discovery (Burdine and Kodadek,

2004). Classically, protein targets have been identified through

biochemical screens using labeled or immobilized molecules.

A growing repertoire of new approaches to study the mode of

action of small molecules now includes transcriptional profiling

(Shaw and Morrow, 2003), network inference models (Gardner

et al., 2003), small-molecule (Bradner et al., 2006; Duffner

et al., 2007), as well as protein microarrays (MacBeath and

Schreiber, 2000). Further, breakthrough genome-scale ap-

proaches in Saccaromyces cerevisiae, which take advantage

of its diploid nature, have emerged and been successful in iden-

tifying cellular targets of small molecules (Baetz et al., 2004; Gia-

ever et al., 1999; Lum et al., 2004; Parsons et al., 2004). Chemical

genomic strategies have also advanced the field of natural

product research by facilitating the characterization of the

ever-increasing repertoire of novel natural products (Jiang

et al., 2008; Parsons et al., 2006). These studies in yeast were

among the first to yield biological insights in response to chem-

ical perturbants on a network level and have inspired the estab-

lishment of postgenomic tools in a variety of bacterial organisms.

The present review emphasizes the successful use of these

approaches in model microbes, principally bacteria and yeast.

Chemical genomics in S. cerevisiae has been recently reviewed

(Hoon et al., 2008b) and accordingly, we have emphasized prin-

ciples and included work in bacterial systems here. The value of

genome-wide approaches in tackling cellular complexity and

exploiting the activity of small molecules is enabling biological

investigations previously not deemed possible. Herein, we

describe the emerging tools for chemical genomic studies

(Figure 1), including genome-scale clone sets, microarray-based

transcriptional profiling, chemical proteomics, and computa-

tional methodologies, highlighting success stories of intriguing

biological and mechanistic findings.
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Figure 1. Experimental Approaches for the
Global Investigation of Protein Function and
Identification of Biological Probes
Schematically shown are various genomic meth-
odologies, which when used in parallel with small
molecules, aid in understanding the complex
cellular network (middle). Depicted are small mole-
cules that have been identified using the respec-
tive methods (1, 3, 7) or used to perturb the cellular
system (2, 4, 5, 6). (1) MAC-13243 (Pathania et al.,
2009), (2) tetracycline (Bollenbach et al., 2009), (3)
ECi8 (Shen et al., 2010), (4) gentamicin (Kohanski
et al., 2008), (5) b-lactam probe (Staub and Sieber,
2009), (6) moiramide B (Hughes et al., 2000), (7)
DMPI (Donald et al., 2009).
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Genome-Scale Clone Sets—Altering Gene Dosage
to Infer Function
With the availability of comprehensive genome sequence infor-

mation, it was inevitable that efforts would follow to construct

elaborate genome-scale clone sets (Table 1) well suited to

studying genetic and chemical-genetic interactions. Chemical

genomics has been best established with extraordinary genomic

tools available for the baker’s yeast Saccharomyces cerevisiae

(Hoon et al., 2008b). Among the most exciting developments in

genome-wide approaches has been the creation of barcoded

homozygous and heterozygous deletion clone sets (Giaever

et al., 2002), where high-throughput competitive growth assays

have allowed the parallel study of multiple S. cerevisiae strains

(Giaever et al., 2002; Shoemaker et al., 1996; Winzeler et al.,

1999). Thus, by exploiting the diploid nature of S. cerevisiae,

the effect a small molecule has on the fitness of a particular strain

can be examined when gene dosage is tuned from 0% (homozy-

gous deletions) (Lee et al., 2005; Parsons et al., 2006) to 50%

(heterozygous deletions) (Giaever et al., 2004; Parsons et al.,

2006) to >100% (overexpressors) (Butcher et al., 2006; Gelperin

et al., 2005; Luesch et al., 2005).

Using both the heterozygous and homozygous deletion

collections, Hillenmeyer et al. looked to uncover a phenotype

for all genes in S. cerevisiae (Hillenmeyer et al., 2008). In the

presence of over 400 small molecules and diverse environ-

mental stresses, the study revealed that 97% of the gene dele-

tions exhibited a measurable growth defect, suggesting that

nearly all genes are essential under at least one condition.

The fact that only 20% of the S. cerevisiae genome was

thought to be essential under rich media conditions highlights

the power of this chemical genomic approach to uncover

a phenotype for virtually all of the remaining genes, and

provides additional insight into the role of so-called nonessen-

tial genes. Although these techniques are not completely trans-

ferrable to monoploid organisms, the work performed in
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S. cerevisiae nicely exemplifies the utility

of altering gene dosage to identify

chemical-genetic interactions and pro-

vided the groundwork to extend chemi-

cal genomics to bacteria.

Reducing Gene Dosage
Mutagenesis experiments have had

a long-standing role in determining gene
dispensability and investigating genetic interactions. Most

recently, systematic gene knockout libraries of all possible dele-

tion mutants have recently been completed in a variety of bacte-

rial species (Table 1). These have particular utility in chemical

genomics (Figure 2A). Decreasing the dosage of a given gene

can lead to any of three possible outcomes with respect to the

biological activity of a compound: no effect, enhancement, or

suppression of phenotype. Systematic enhancement screens

using the E. coli deletion collection have focused on known anti-

biotics to date and revealed signature chemical-genetic interac-

tions that enhance the growth inhibition exerted by antibiotics

(Tamae et al., 2008). These studies have huge potential in facili-

tating mechanism of action studies. Indeed, genetic enhancers

of the action of gentamicin provided key insights that ultimately

led to the understanding that aminoglycosides mediate cell

death through the production of toxic hydroxyl radicals (Kohan-

ski et al., 2007, 2008).

Other genome-scale chemical-genetic enhancement screens

have proven useful in identifying genes implicated in intrinsic

multidrug resistance (Breidenstein et al., 2008; Duo et al.,

2008), as well as those responsible for maintaining a population

of persister cells (Hansen et al., 2008). However, unlike deletion

libraries in yeast, the bacterial counterparts do not contain

molecular barcodes, limiting their ability to be used in pooled

competitive assays. To this end, a set of barcoded deletions in

E. coli is currently being generated, allowing for future parallel

analysis of competitive growth assays similar to those in yeast

(Mori et al., 2009). Moreover, two groups have recently reported

methods for the high-throughput generation of double deletions

in E. coli (Butland et al., 2008; Typas et al., 2008), further expand-

ing the current tool set for microbial chemical genomics. Indeed,

systematic studies of the interactions of double deletions with,

e.g., growth inhibitory small molecules, would allow for higher-

order studies of the cellular network and its capacity to buffer

the effects of multiple perturbations.
ª2010 Elsevier Ltd All rights reserved 625



Table 1. Genome-Scale Clone Sets in Model Microbes

Organism Reference Note

Gene knockdown

Bacillus subtilis Kobayashi et al.

(2003)

Candida albicans Xu et al. (2007) Heterozygous

barcoded

Escherichia coli Baba et al. (2006)

Helicobacter pylori Salama et al. (2004)

Pseudomonas

aeruginosa PA01

Jacobs et al. (2003)

Pseudomonas

aeruginosa PA14

Liberati et al. (2006)

Saccharomyces

cerevisiae

Giaever et al. (2002);

Winzeler et al. (1999)

Homo/heterozygous

barcoded

Staphylococcus

aureus

Donald et al. (2009) Antisense

knockdown

Overexpression

Escherichia coli Kitagawa et al. (2005)

Neisseria

gonorrhoeae

Brettin et al. (2005)

Pseudomonas

aeruginosa

Labaer et al. (2004)

Saccharomyces

cerevisiae

Gelperin et al. (2005)

Staphylococcus

aureus

Brandner et al. (2008)

Promoter-reporter

Escherichia coli Zaslaver et al. (2006) gfp-promoter fusions

Salmonella

typhimurium

Goh et al. (2002) Promoter-lux

reporter fusions
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Along with knockout libraries, antisense technology has

provided an additional means to explore small molecule effects

by controlled reduction of gene expression (Figure 2B). Recently,

Donald et al. arrayed xylose-inducible antisense RNA strains

corresponding to 245 essential genes in Staphylococcus aureus

(Donald et al., 2009). This antisense RNA system led to the

discovery of new cell wall inhibitors, suggested to inhibit

SAV1754, a previously uncharacterized cell surface transmem-

brane protein involved in cell wall assembly (Huber et al.,

2009). SAV1754, structurally related to the E. coli peptidoglycan

flippase, MurJ (Ruiz, 2008), is thus speculated to perform an

analogous function in Gram positive bacteria. Profiles generated

using antisense knockdown not only capture direct targets, but

also pathway-related genes by exploring various strain sensitiv-

ities in the presence of the small molecule. A significant limitation

of this array is the lack of genome coverage; it is limited to those

genes essential for growth, excluding the possibility of charting

chemical-genetic interactions with the dispensable gene set.

A counter point to this concern argues that the targets of inhibi-

tory small molecules should be essential for cell viability (Chalker

and Lunsford, 2002). Thus, mechanism of action studies needn’t

explore chemical-genetic interactions with the dispensable frac-

tion of the genome. Nevertheless, suppression and enhance-

ment phenotypes can reveal interactions that reflect the under-
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lying cellular network with which small molecules are

interacting (Prelich, 1999), highlighting the important role of dele-

tion clone sets in understanding mechanism of action.

Increasing Gene Dosage
Libraries designed for high expression of each gene through an

inducible promoter have been increasingly exploited for small

molecule target identification (Butcher et al., 2006; Li et al.,

2004; Luesch et al., 2005; Pathania et al., 2009), where the pres-

ence of the target gene in multiple copies leads to suppression of

growth inhibition by a particular small molecule (Figure 2C). Our

group recently reported on the first systematic use of this meth-

odology using the E. coli overexpression clone set (A Complete

Set of E. coli K-12 ORF Archive [ASKA]) (Pathania et al., 2009).

Proof of principle experiments employed a panel of antibiotics

and revealed a unique set of chemical-genetic interactions for

each compound. A stringency analysis of the concentration

dependence of suppression revealed that known cellular targets

were typically encoded by those genes that suppressed the

highest doses of antibiotic. Of interest, the inhibitory action of

a novel molecule, MAC13243, was suppressed at high strin-

gency when the lipoprotein chaperone, LolA, was expressed at

high copy. Further physiological and biochemical experiments

suggested that MAC13243 is a new probe of lipoprotein traf-

ficking in bacteria (Pathania et al., 2009). Nevertheless, target

identification through suppression of growth inhibition is not

always straightforward; the inherent complexity of the cellular

network often leads to a variety of puzzling chemical-genetic

interactions.

A particularly innovative use of high-copy suppression was

that of Arnoldo and coworkers who used the methodology to

identify P. aeruginosa virulence factors (Arnoldo et al., 2008).

A yeast-based method was developed to screen for P. aeruginosa

genes, which when overexpressed, were growth inhibitory to

S. cerevisiae. Such genes were subsequently counter screened

against a library of small molecules to uncover compounds

which restored the growth of S. cerevisiae. An inhibitor of Exoen-

zyme S, a toxin of the P. aeruginosa type III secretion system,

was identified and subsequently shown to prevent P. aeruginosa

infection in mammalian cells. Integration of bacterial expression

systems into S. cerevisiae provides a unique platform for the

identification of novel virulence factors that can serve as poten-

tial antibacterial targets.

Like most techniques, diverse genome-scale chemical

genomic approaches appear to benefit from integration. Of

interest, several recent studies in yeast have combined efforts

that involve multiple genome-scale clone sets to provide

a more comprehensive and sensitive inference on small mole-

cule action (Hoon et al., 2008a; Kemmer et al., 2009; Yan et al.,

2009).

Microarray-Based Gene Expression Profiling
Chemical compounds lend themselves particularly well for gene-

expression profiling studies, whereby transcriptional effects of

small molecules can be documented using DNA microarrays.

In fact, studying the effect of a small molecule on the regulation

of gene expression has been at the forefront of recent chemical

genomic studies. These approaches have proven vital in the

global exploration of protein function, revealing novel insights
hts reserved



Figure 2. Genome-Scale Clone Sets Aid in
Mode of Action (MOA) Determination and
Provide Insights on Biological Processes
(Biology) in Bacteria
Here, the red triangle represents the small mole-
cule and the pacman, a protein target of interest.
(A) Mutagenesis using deletion collections in the
presence of small molecules leads to death
when perturbing a redundant pathway.
(B) Reducing gene expression through antisense
RNA clone sets. (i) No antisense RNA expression
such that the protein target is available at wild-
type levels, requiring a certain amount of
compound for inhibition. (ii) Antisense RNA expres-
sion from an inducible plasmid knocks down the
amount of transcript, leading to reduced levels of
protein targets, thus requiring a lower concentra-
tion of compound for inhibition than in (i).
(C) Suppression using high-expression libraries,
whereby overexpression of a gene of interest in
the presence of a small molecule can restore life.
(D) Promoter-reporter construct libraries allow for
the detection of specific promoter activity (yellow
star) in the affected pathway perturbed by a small
molecule. For example, the small molecule
targets protein B, such that promoter activity
can be detected from both PA and PB, but not PZ.
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into many cellular pathways as well as mechanisms of action of

uncharted small molecules.

Mode of action studies using microarrays have frequently

involved comparative analyses with transcriptional profiles of

known inhibitors or regulatory proteins (Freiberg et al., 2005;

Hughes et al., 2000; Kung et al., 2005; Marton et al., 1998).

Indeed, with gene-expression profile databases rapidly expand-

ing, comparisons to available profiles can be readily made to

identify relevant cellular pathways of unknown small molecules.

Accordingly, the work by Kung et al. (2005) identified Cdk1 and

Pho85, two cyclin-dependent kinases, as the targets of the

novel inhibitor GW4000426 in S. cerevisiae through direct

comparison to microarray transcriptional signatures elicited by

specific pharmacological agents. Generation of drug reference

profiles presents the advantage of identifying all targets that

together lead to the cellular effects resulting from drug treat-

ment. GW4000426 was shown to simultaneously inhibit both

kinases, revealing the synthetic interaction of Cdk1 and

Pho85. In this case, the novel protein kinase inhibitor aided in

uncovering this unique cellular response through microarray-

based transcriptional profiling. Another interesting study by Frei-

berg et al. generated a collection of genome-wide expression

profiles of Bacillus subtilis in response to a panel of 14 diverse

antibiotics (Freiberg et al., 2005). In addition, the authors

extended their data sets with expression profiles from condi-

tional mutants of four distinct essential genes coding for

emerging antibacterial targets. As proof of principle, this refer-

ence compendium was used to pinpoint the molecular targets

of two novel antibiotics and also identified a novel mode of

action for moiramide B, based on inhibition of acetyl coenzyme

A carboxylase.
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In addition to mechanistic studies, the development of micro-

array-based technology has provided the prospect to gain

a genome-wide understanding of changes within the organism’s

transcriptome in response to small molecules. In fact, chemical

genomic studies using transcriptional profiling have revealed

novel insights into a number of different cellular processes

following treatment with chemical compounds, such as anti-

cancer agents (Wu et al., 2004), metabolic analogs (Yu et al.,

2008), and DNA-damaging agents (Birrell et al., 2002; Lee

et al., 2005). An interesting study using the latter, aimed at further

expanding our knowledge of DNA damage, made use of the

collection of barcoded yeast deletion strains competitively

grown in the presence of various DNA-damaging agents (Lee

et al., 2005). This study shed light on the cell’s complex response

to DNA damage, uncovering 34 previously uncharacterized

genes involved in DNA repair, as well as novel epistatic interac-

tions between genes implicated in the defense mechanisms

against DNA-damaging agents. This global analysis further re-

vealed the genetic requirements important for resistance to the

various compounds, overall advancing our understanding of

the DNA-damage response. Indeed, powerful microarray-based

chemical-genomic technologies in S. cerevisiae are well estab-

lished, due to its robustness and ease of genetic modification,

allowing a thorough functional characterization of the genome

(Giaever et al., 1999; Hughes et al., 2000; Lum et al., 2004;

Parsons et al., 2004).

Similarly, microarray-based studies of gene expression

following treatment with small molecules have proven useful

strategies for mode of action predictions and biological studies

in prokaryotic organisms. A successful example was provided

by the recent work of Mendez-Ortiz et al. who were interested
ology 17, June 25, 2010 ª2010 Elsevier Ltd All rights reserved 627
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in the global response of E. coli to the biologically relevant small

molecule, 30,50-cyclic diguanylic acid (c-di-GMP), an important

second messenger that controls motility and adhesion in

bacteria (Mendez-Ortiz et al., 2006). Expression profiles of

E. coli in the presence of high levels of c-di-GMP, revealed its

effects on the transcriptional regulation of certain genes in the

cell, including several cell surface and membrane-bound

proteins. Expectedly, genes involved in motility and cell division

were altered, while elevated levels of c-di-GMP interestingly trig-

gered the transcription of 50 genes of unknown function, high-

lighting the complex regulatory mechanisms where c-di-GMP

takes part in bacterial metabolism.

Early genome-wide transcriptional profiling studies in Staphy-

lococcus aureus increased our understanding of cell wall active

antibiotics through the uncovering of a cell wall stress stimulon

(Utaida et al., 2003). Identification of genes in the presence of

oxacillin, D-cycloserine, or bacitracin, three antibiotics that

inhibit different steps in peptidoglycan synthesis, all lead to the

upregulation of a large number of common genes, including

ones that code for proteins involved in cell wall metabolism

and stress responses. This study provides insights into the

molecular events that take place following inhibition of peptido-

glycan synthesis in bacteria and deepens our understanding of

the inhibitory mode of action of some of the most common anti-

biotics. Such studies foreshadow the future evaluation and

comparison of the transcriptional responses to these antibiotics

in strains resistant to these compounds. Similarly, Kaldalu et al.

used transcriptional profiling in E. coli to show that, even with the

most mechanistically unrelated antibiotics, a subset of genes is

commonly affected in their transcriptional response, offering

fundamental insight into the basis of antibacterial activity of anti-

biotics and mechanisms of bacterial death (Kaldalu et al., 2004).

Promoter-Reporter Construct Libraries
Bacterial promoter-reporter construct libraries (Table 1) have

also found utility in chemical genomic studies in assessing tran-

scription patterns on a global level in response to small mole-

cules (Fischer et al., 2004; Goh et al., 2002; Yim et al., 2006)

(Figure 2D). In contrast to microarray technology, these libraries

provide high resolution, data-rich time courses of promoter

response to bioactive small molecules. These advantages facil-

itated the investigation of the action of antibiotics in Salmonella

typhimurium at subinhibitory concentrations (Davies et al.,

2006; Goh et al., 2002; Yim et al., 2006). Here, significant tran-

scriptional activation of various promoters revealed that antibi-

otics can have multiple effects on the cell by acting as chemical

signals to control bacterial metabolic processes, suggesting

a new role beyond therapeutic utility.

In 2006, Zaslaver et al. reported on the creation of a transcrip-

tional fusion promoter library in E. coli, where �2000 promoters

were fused to gfp (Zaslaver et al., 2006). Using this library, Bol-

lenbach et al. looked to shed light on the mechanism of suppres-

sive drug interactions between DNA and protein synthesis inhib-

itors, whereby the combination of the two allows the cells to

grow faster (Bollenbach et al., 2009). Examination of the expres-

sion profiles of �200 E. coli promoters in response to different

antibiotics revealed that ribosomal levels are not optimally regu-

lated under conditions of DNA stress, causing an imbalance

between DNA and protein levels. Reducing protein levels with
628 Chemistry & Biology 17, June 25, 2010 ª2010 Elsevier Ltd All rig
protein synthesis inhibitors restores this imbalance allowing cells

to grow faster; this same trend is observed when mutations in the

ribosomal RNA operons impinge on ribosome synthesis (Bollen-

bach et al., 2009). Overall, promoter-reporter construct libraries

provide a unique look at expression dynamics in cells and can

reveal fascinating roles for even the most well-established

antibiotics.

Chemical Proteomics
Proteomic studies have long played an integral part in assessing

protein structure, function, and cellular interactions. Incorpo-

rating chemical strategies has provided efficient detection of

select classes of proteins, as well as provided an effective means

for subsequent isolation from the proteome. The realm of

increasingly diverse chemical moieties needed for chemical pro-

teomics has positioned synthetic chemistry as a crucial partner

for the success of this field. Overall, the study of chemical pro-

teomics to describe protein function, or uncover cellular targets

of compounds, employs different methods, depending upon the

nature of the study and the type of chemical probe used.

Activity-based probe profiling (ABPP) involves covalently

modifying the active site of an enzyme with a chemical probe

to allow for its isolation (Cravatt et al., 2008; Jeffery and Bogyo,

2003; Verhelst and Bogyo, 2005). This type of approach can yield

information on enzymatic activities (such as function, mecha-

nism, or active site properties) (Artavanis-Tsakonas et al.,

2006; Barglow and Cravatt, 2007; Greenbaum et al., 2002; Hek-

mat et al., 2005; Misaghi et al., 2006; Staub and Sieber, 2008),

groups of functionally related enzymes (Dalhoff et al., 2009; Mis-

aghi et al., 2006), and has been employed as a tool to understand

the virulence machinery of infectious bacterial and parasitic

species (Bottcher and Sieber, 2008b; Greenbaum et al., 2002;

Hang et al., 2006; Puri and Bogyo, 2009). As well, a competitive

variation of ABPP can identify highly potent and selective inhib-

itors, which outcompete the chemical probe (Bottcher and

Sieber, 2009; Leung et al., 2003). One interesting application of

ABPP used various b-lactam modified chemical probes to profile

the b-lactamase class of enzymes in both sensitive and resistant

S. aureus strains (Staub and Sieber, 2009). Several unique

enzyme activities were detected in the resistant strain including

two novel enzymes, potentially implicated in resistance in meth-

icillin-resistant S. aureus (MRSA). Chemical proteomics provides

the advantage of studying enzymatic properties in the context of

the proteome (not requiring recombinant protein); however, it is

limited by the ability to selectively target the active site of

a certain family of enzymes for covalent modification. As of

yet, selective ABPP probes are only available for a few classes

of enzymes and to increase the utility of this approach, new

chemical probes for other enzymatic families must be created.

In contrast to ABPP, compound-centric chemical proteomics

(CCCP) is largely about target discovery. Here mechanism of

action of a bioactive compound is inferred through the identifi-

cation of interacting cellular components, most often by affinity

chromatography and advanced mass spectrometry techniques

(Rix and Superti-Furga, 2009). CCCP has successfully identified

cellular targets for b-lactones (Bottcher and Sieber, 2008a;

Staub and Sieber, 2008), b-lactams (Staub and Sieber, 2008),

anticancer agents (Bantscheff et al., 2007; Rix et al., 2007),

and a variety of natural products (Piggott and Karuso, 2004;
hts reserved
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Rix and Superti-Furga, 2009). Here, target identification deals

with proteins in their natural environment, as they are ex-

pressed at physiological levels in the presence of binding part-

ners and any posttranslational modifications. However, CCCP

is only applicable to small molecules which can be chemically

modified for immobilization and does not distinguish specific

versus nonspecific interactions. Like other genomic ap-

proaches, tackling the proteome with small molecules as

modulators is an emerging technology with much promise to

characterize enzyme function and understand compound

mode of action.

Computationally-Assisted Chemical Genomics
Significant advances in computational power have made it

possible to streamline processes in the discovery of chemical

probes of biology and leads for drugs. A variety of databases

exist, from those that detail molecular structures (Klebe, 2000),

generate virtual libraries of small molecules (Barone et al.,

2001), and, most recently, provide gene expression profiles

(Faith et al., 2008). Additionally, computer programs and algo-

rithms are increasingly being developed to guide major steps

in chemical genomic studies. Genome-scale technologies are

yielding an overwhelming amount of valuable biological data

and, as such, computational analyses that apply the data to

generate and interpret network models, are expanding. In partic-

ular, with the growing challenges in microarray data analysis

come models with predictive power to assess the expression

profile of a compound of interest and assign its potential targets

(Bansal et al., 2006; di Bernardo et al., 2005; Hallen et al., 2006).

Recently, gene network inference algorithms have been thor-

oughly reviewed in Bansal et al. (2007). Such powerful computa-

tional analysis methods generally rely on integrating genetic

perturbation outputs, such as microarray experimental data,

with designed algorithms aimed at elucidating compound

targets and providing insights into biological networks. For

example, Hallén et al. designed an algorithm (CutTree) for

genome-wide expression sets to identify the primary affected

genes of a chemical compound of interest (Hallen et al., 2006).

These were filtered out from genes that were indirectly affected

and finally relatively ranked according to their importance in the

microarray experiments. As a proof of principle, CutTree was

capable of identifying four of the five known primary targets of

galactose in yeast.

Another approach, mode of action by network identification

(MNI), distinguishes direct cellular targets of a bioactive

compound from other indirect gene products, which simply

result from changes in the activity of the primary target (di Ber-

nardo et al., 2005). Specifically, MNI computes the likelihood

that gene products and related pathways are the targets of

a small molecule. By first reverse engineering a network model

from a set of expression profiles, MNI then analyzes drug-

induced expression profiles to identify the genes targeted by

the compound. This method overcomes the limitation of gener-

ating whole-genome expression profiles that inherently do not

distinguish directly targeted genes, from those that are indirectly

regulated. Following validation of their method with a variety of

compound treatments, di Bernardo et al. uncovered thioredoxin

reductase as the target of PTSB, a previously uncharacterized

inhibitor of yeast growth (di Bernardo et al., 2005).
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Other computational methods include studies of small mole-

cule modeling and virtual screening (Eckert and Bajorath,

2007). Recently, Shen et al. proposed a strategy for antimicrobial

discovery that begins solely with computational methods to

identify chemical matter for novel targets (Shen et al., 2010).

Following genome-scale metabolic reconstruction in E. coli

and computational identification of essential metabolic reac-

tions, the enzymes of interest are docked against a library of

small molecules. Prediction through virtual screening leads to

the identification of a subset of inhibitors, which in turn are exper-

imentally validated for enzymatic and bacterial growth inhibition.

Largely, efforts in computationally assisted chemical genomics

are increasingly contributing to the prediction and understanding

of the biological system following chemical perturbation. In fact,

advanced statistical and computational analyses following

genome-scale studies are becoming inevitable, due to their

inherent overwhelming and complex nature.

Conclusions
Microbial systems, characterized by redundant and complex

functional pathways typify the modern view of the cell and, as

such, modern technologies, used to perturb, explore, and even

reconstruct these systems, are increasingly touted for studying

biological systems.

Chemical genomic approaches provide a platform that

contends with the complexity inherent in this postgenomic

view of cellular biology. Accordingly, our repertoire of chemical

matter is expanding, providing new means to globally study

biology, largely attributed to technological advances in synthetic

chemistry and natural product research. The creation of

genome-wide clone sets has been a technical feat that has

enabled remarkable advances in chemical genomics in model

microbes. The systematic modulation of gene dosage on a

genome scale has been among the most important technolog-

ical developments. Additionally, microarray- and promoter-

based transcriptional profiling experiments have made it

possible to thoroughly understand the cell’s immediate and

dynamic response to a perturbant on a genome-wide level.

Studies of the proteome using small molecules of interest rely

on direct physical interactions to infer compound mode of action

and enzymatic activities. Overall, chemical genomic studies yield

information-rich data sets, often requiring additional means of

analysis. Hence, booming advances in computational power

are becoming a vital necessity. A plethora of innovative algo-

rithms make it possible to generate a wide array of outputs,

from network connectivity maps to simple clustograms. It is

important to note that a major caveat to all the aforementioned

methodologies is the abundant detection of indirect interactions.

Thus, more than ever, experimental validation is becoming a crit-

ical step in the pipeline for the discovery of biological probes.

Accordingly, the field is increasingly dependent on large collab-

orative efforts whereby biology, chemistry, biochemistry, and

computational sciences are at interplay. Overall, a better under-

standing can be obtained by integrating multiple genome-scale

techniques to piece together the complete extent of chemical-

genetic interactions. The assembly and chemical-genomic char-

acterization of a repertoire of diverse and novel bioactives will

provide an exceptional launching point for future studies

pursuing the activity of small molecule probes within the cellular
ology 17, June 25, 2010 ª2010 Elsevier Ltd All rights reserved 629
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network. Along with providing new and extraordinary information

about the genetic networks of the model organism under study,

the field of chemical genomics remains largely untapped as

a paradigm for antibacterial drug discovery. Modern days in

chemical genomics are embracing a new emerging theme in

understanding biology, one that envisions the cell not as indi-

vidual components, but as a dynamic unity of complex and

robust pathways; a perspective that will largely benefit the study

of fundamental biological processes, not to mention drug

discovery.
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